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Diffraction of sea waves by a slender body. Part 2. 
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A uniformly valid theory (all wavelengths and angles of incidence) for the diffraction 
of sea waves by a slender body, correct to second order in the slenderness parameter, 
has been derived for the shallow-water limit. This theory is now extended to the finite 
water depth case, with the same results and accuracy. 

1. Introduction 
In an earlier paper (Aranha & Sugaya 1987, herein-after referred to as I) the 

diffraction of sea waves by a slender body was considered in the shallow-water limit. 
An asymptotic theory was then derived, uniformly valid for all frequencies and 
angles of incidence and correct to second order in the slenderness parameter. The 
purpose of the present work is to extend that theory to an arbitrary, although finite, 
water depth. The case where the depth is infinite will not be treated here and, as in 
paper I, the mean forward velocity is assumed to be zero. 

Newman (1978) developed the leading-order term of this theory for the radiation 
problem in infinite depth and Sclavounos (1981) extended that work to the 
diffraction problem. More recently, Bsrresen & Faltinsen (1985) generalized the 
NewmanSclavounos approach to finite depth. In all these works the apparent error 
factor, in the diffraction problem, is of the form [l +O(e)], where e is the slenderness 
parameter, and furthermore the kernel of the slender-body integral equation is 
relatively complicated, especially in the finite-depth case. 

In the present work, the theory is formally derived up to second order in the 
slenderness parameter e .  In order to do so one must introduce, in a very precise way, 
how the error factor of the asymptotic theory is measured. As explained in I, several 
reasons have pushed us to measure this asymptotic error in the space of the 
generalized functions. This point is reviewed, and further discussed, in $6 of the 
present work, but one result must be stressed here: with this measure it is possible 
to show, for a class of slender geometries, that the leading-order solution already has 
an error factor of the form [l + O(e2)], even in the diffraction problem. This result is 
confirmed by some numerical experiments ; see 7 .  

Besides this conceptual difference, related to the measurement of the error factor, 
the present work also introduces some simplifications from a more practical point of 
view. While Bsrresen & Faltinsen (1985) approach the finite-depth result from the 
Newman-Sclavounos infinite-depth theory, in the present work the finite-depth 
result is obtained from a different limit, namely from the shallow-water approxi- 
mation, developed in I. As a consequence, the kernel of the slender-body integral 
equation is very simple here - it is just Hankel's function of the first kind - and at 
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FIGURE 1. The geometric definitions of the problem under consideration. (a) Upper view, (6)  
cross-section. 

the end of $ 5  the discrepancy between the present kernel and the one introduced in 
the Newman-Sclavounos theory is discussed from a more physical point of view. 

We shall give here an overall view of the problem under consideration. The 
geometric definitions are given in figure 1, where a is the incidence angle ; h the water 
depth ; b the geometric parameter ; A the finite fluid region IyI < 6; n the normal to 
the cross-section; N = n+N, i  the normal to S ;  S the body surface; and i3B(x) the 
contour line, section x. 

The geometric parameter b must satisfy the inequality 6 2 18, but it is otherwise 
arbitrary. I ts  introduction, together with the finite fluid region A ,  will be needed in 
$2, where the cross-section problem is analysed. In the normalization used here, 
B = 1 is the maximum beam and L = l / e  the body length. Obviously, E = B / L  is 
the small slenderness parameter. 

If KO is the wavenumber, related to the wave frequency w by the dispersion 
relation, 

(1.1) 
w2 - = KO tanh KO h, 
9 

then the oblique incident wave has a factor exp (iK, x cos a ) ,  rapidly oscillatory in the 
longitudinal direction. Following Newman (1978) and Sclavounos (1981), this 
rapidly oscillating term can be factored out, and the following definitions can be 
introduced 1 

incident wave Qr(y, z )  eiKozcosa 

scattered wave 

total wave 

@(x, y, x )  eiKozCosa (1.2a) 

@,(x, y, z )  eiKoscosa 
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A proper definition for the incident wave will be given in $2 and the total wave is 

(1 .2b)  
defined by 

The scattered potential @(x, y, z )  satisfies the field equation and boundary conditions 

@T@, Y, 2) = @,(Y, 2) + @(X> y, 2). 

a@ a 2 @  
V2@- (KO coscr)2 @ + 2iK0 cos aF+C7Z2 = 0, 

X 

(1 .3a)  

together with the boundary condition a t  the body surface, 

eiK,r 

@(r,  8, z )  eiK@osa - A ( 8 ) y c o s h K o ( z + h ) ;  r = (x2+y2)i+ co. ( 1 . 3 ~ )  
(KO 6’ 

In  the above expressions, and throughout this work, the time factor exp(-iot) is 
assumed and the following notation is used: 

The method of matched asymptotic expansions, on which the slender-body theory 
is based, distinguishes two regions: one close to the body called the ‘inner region’, 
where Iyl/B < O ( l ) ,  and the other far from it called the ‘outer region’, where 
Iyl/L 2 O(1). In the inner region the body is seen as if it were infinitely long, but the 
far-field radiation condition is excluded. It follows that the inner solution can be 
described by a cross-section problem (body appears infinitely long), although it 
cannot be completely determined (radiation condition missing). In  the outer region 
the body is seen as if it were a line emitting waves, but the near-field body boundary 
condition excluded. The outer solution can be described, then, by an unknown 
distribution of wave singularities over the segment of length L. The indeterminacy 
of the inner and outer solutions is resolved by matching them in an ‘overlap’ region. 

The solution of the cross-section problem is an essential step for the derivation of 
the inner solution. Since, however, there is some controversy concerning the head-sea 
limit of the cross-section solution, this point is analysed in some detail in $2 of the 
present work. I n  $ 3  the inner solution and its outer expansion are elaborated, and in 
$ 4  the outer solution and its inner expansion are derived. Both solutions are correct 
to second order in the slenderness parameter and are formally written in terms of 
some unknown functions, expressing the indeterminacy of each one. These functions 
are determined in $5, when the outer expansion of the inner solution is matched with 
the inner expansion of the outer solution. I n  the light of the error measure introduced 
here, and of some related results derived in I, the error factor of the second-order 
term is analysed in $6. It is shown, then, that  for a useful class of slender geometries 
- those with an almost uniform cross-section - the leading-order solution already has 
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an error factor of the form 1 + O(E’). In  $7 the main conclusions of the present work 
are confirmed by some numerical experiments. 

2. Cross-section solution 
One of the reasons why the shallow-water limit was studied first is the simplicity 

of its cross-section problem. In this case the solution can be analytically determined 
and some relevant properties can be easily derived; see $2.1 in paper I .  The purpose 
of the present section i s  to show that equivalent results can be derived for the 
arbitrary water depth case, but the formulation is much more complex and only the 
main features of this problem will be discussed. Mathematical details can be found 
in Aranha (1984), although the proofs of some more pertinent results are sketched in 
the Appendix of the present work. 

Let { w ; K o }  be the wave frequency and wavenumber, related by the dispersion 
relation ( l . i ) ,  andfo(z) be the function 

fo(z) = Fo coshKo(z + h), 

a 0  h 
O h2Koh+sinh2K,h; Lh f;(z) dz = 1. 

1 F2 = - 

The incident wave can be written as 

#I(y, z )  = A, fo(z) eiKoysinrr, (2.2) 

where A, = i(gA)/(F0w coshK, h) and A is the wave amplitude. In  the following it will 
be assumed that A ,  = 1. In  the cross-section problem, the total, incident and 
scattered potentials will be designated by the lower-case letters {#&, z )  ; #,(y, z )  ; 
$(y, z ) } ,  respectively, and the scattered potential must satisfy the equations 

V2q5 - (KO cos a)2 4 = 0, ) 

together with the boundary condition on the cross-section contour line aB, 

V# * n 1x3 = - (V#I - n) ICB, 

and the radiation condition 

In (2.5),  R(a) and T(a)+l  are, respectively, the reflection and transmission 
coefficients. For a head sea (a  = 0) there is no physically clear radiation condition, 
but this point will be discussed later on in this section. 

For (yI 2 6 2 b,  see figure 1,  the fluid region is a rectangular strip and the solution 
of (2.3), (2.4) can be obtained by separation of variables. If #*(y,z) designate the 
solutions in the regions y 3 f 6, respectively, and $(y, z )  is the solution in the finite 
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fluid region A(ly1 < 6), the necessary and sufficient conditioqs for one to be the 
analytic continuation of the other are 

Separation of variables, in the regions y 5 f 6, leads naturally to a Sturm-Liouville 
problem and to a complete infinite set of orthonormal functions {f,(z) ; n = 0 ,1 ,2 ,  
. . .}, where fO(z) is given in (2.1) and, for n 2 1, 

w2 
- - - -K,tanK,h, 
9 

f,(z) = lPncosKn(z+h); 

Since this set is orthonormal 

with Y ( y , z )  being a function defined in A .  It is an easy task to check that the 
solutions of (2.3), (2.5) in the regions y 2 k6 that satisfy the continuity requirement 
(2.6) are given by 

$ k ( y ,  z )  = ~ o i f ~ ( ~ ) ~ ' " ~ ( I v I - ~ ) s i n o  + C L,i(#) fn(z) e-A=(lgl-5) 
(2.10) 

00 

n-1 

&(a) = [Ki  + (KO cos a)2]i. 

Comparing (2.10) with (2.5) one obtains 

(2.11) 

Enforcing continuity of velocity in y = k6, see (2.6), the following expression can be 
derived, with the help of (2.10): 

(2.12) 

The function $(y,z) is a solution of (2.3), (2.4) in the finite fluid region A and it is 
subjected to (2.12) on the boundary lines y = k6 of A .  If the field equation in (2.3) 
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is multiplied by Y(y,z), integrated by parts in A and the boundary conditions in 
(2.3), (2.4) and (2.12) are used, the following identity is obtained: 

G ( # ;  ul)+iKosina[A~L,+(Y3+A,L,(Y3] = K O  V,(!P), (2.13) 

where 

G(#; Y3 = JJA VWY'dA + (Kocoscr)~J~A + Y U  -$I #(!I, 0) Ul(y,O) dy 
F 

+ 2 h n ( 4  rL=(~)L;t(y)+L,(#)L,(y')I (2.14) 
n=l 

and (2.15) 

In (2.14), F is the free surface of the finite fluid region A and (2.13) is well defined in 
the Hilbert space Wi1)(A) ,  of all Y(y,z) whose gradient squared is integrable in A. 

The diffraction in shallow water is described by the scattering matrix A ; see (2.13) 
in I. A similar formulation is possible here but, in order to do so, the undulatory and 
evanescent parts of #(y,z) must be separated. With this motivation, the following 
Hilbert subspace is introduced : 

We(A) = { Ye(y, Z )  E Wg)(A) : L t  ( Ye) = O } .  (2.16) 

This subspace is called the 'evanescent' subspace of W!j')(A) since its elements, when 
extended to the regions y >< +6 by an expression similar to  (2.10), have only 
evanescent terms. To complete the separation between undulatory and evanescent 
parts, the two auxiliary functions 

( 2 . 1 7 ~ )  

are introduced, where obviously 

L$(q*) = 1,  L$(q') = 0. (2.17 b)  

Elements of Wil)(A) can now be decomposed in the following way; 

(2.18) 
Y ( ~ ( y , z )  =L,+(Y3qf(y,z)+L,(Y3q-(y,z)+ ul,(y,z); YeEW,(A), 

#(Y, 2) = A,+ Q+(Y, 2) + A ,  q - ( ~ ,  2) + #e(Y, 2) ; # e E  W,(A)7 

where the relation A; = LO+(#), see (2.8), has been used. Placing (2.18) into (2.13) and 
introducing the linear functionals 

V'(Y)=-G(q*;Y),  (2.19) 

i t  can be shown that #(y, z )  can be written as 

(2.20) I # ( Y , Z )  = Ko#i0'(y,2)+A;:p+(y,z)+A,p-(y,z), 

P*(Y,  2) = q*(Y,  2) + #$(Y, 2). 

The three unknown functions {#io)(y, z )  ; #$(y, z ) }  are solutions of the following weak 
problem : to determine #,&/, z )  = {#Lo)(y, z )  ; #$(y, z ) )  E We(A) such that 

G(#e; y e )  = J'( y e ) ,  all y e  E We@), (2.21) 
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with V(  a )  = (V,( .); V*( * ) } ;  see (2.15) and (2.19). The two coefficients A$ are solutions 
of the linear system 

A .  r"A3 = { ;} 7 (2.22) 

where V; = V,(P*), ( 2 . 2 3 ~ )  

and the scattering matrix A is given by 

(2.233) 

1 K, G(P+ ; P-) 
1 
- G(p-; p-) - i sin a 

KO 
From here on, the body will be assumed to be symmetric with respect to the plane 
y = 0. In  this case, the coefficients of the scattering matrix can be written in a more 
compact form, namely 

a - -G(p+;p+) = -G(p-;p-), 

( 2 . 2 3 ~ )  

1 1 
l - K 0  KO 

1 
a2 = -Q(p+;p-). 

KO J 
The result obtained here is analogous to the one derived in shallow water (see (2.13) 
in I), the only difference being that now the coefficients {a l ,  a2, V J }  must be 
numerically determined. 

Owing to the symmetry of the body, the potentials can be separated into 
symmetric and antisymmetric parts, designated in the following by the suffixes S and 
A, respectively. Observing that (p+(y, z )  +p-(y, z ) )  is an even function of y and (p+(y, 
z)-p-(y, 2)) is an odd function, then the symmetric and antisymmetric parts of the 
total potential $T can be written in the forms (see (1.2b) and (2.20)) 

In the above expression, the dependence on the incidence angle a is made explicit and 
{$I, ; $I, A} are the symmetric and anti-symmetric parts of the incident wave, namely 

(2.24 b)  

The far-field behaviour of $T(y, z ;  a) can be obtained directly from either ( 2 . 2 4 ~ )  or 
(1.2b) and (2.11). To present this result in a more compact way, the following 
coefficients are introduced here : 

(2.25 a)  
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(2.25 6) 
4T,A(y ,z ;a )  - [~~(a)e i~oiu l~ ina+is in  ( ~ ~ l y l  sina)ljo(z).) 

The results obtained so far are well known in the specialized literature. The reason 
for presenting them here, in such detail, is to give a theoretical background for the 
analysis of the second-order correction (see $3) and also to help the discussion of a 
controversial result, regarding the head-sea limit. 

As would be expected, the cross-section solution depends continuously on the 
incidence angle a; see Aranha (1984). In  this context, one must be careful to interpret 
the 'singular nature of the head-sea diffraction problem ', established by Ursell(l968) 
and extensively quoted in the related literature (see, for example, Newman 1978 and 
Sclavounos 1981). In the following, this point will be discussed. 

In  the head-sea limit, the scattering matrix A,  given by (2.23b, c ) ,  is real and 
symmetric. It has, then, two real eigenvalues { A l ;  A, } ,  given by 

QtT,s(y, z ;  a)  - [&(a) eiKolglsina + cos (Kolvl sin 4 1  fo(Z,, '1 

(2.26) 

The behaviour of the cross-section solution when a --f 0 can be expressed with the help 
of the eigenvalues (2.26). Details can be found in the Appendix and only relevant 
results will be quoted here. Thus, the limit of the antisymmetric part of q5T, when 
a --f 0, is given by 

( 2 . 2 7 ~ )  1 RA(a) - is ina --Kob +O(a2), (b, -1 
. sin a 

~ T , A ( Y ~ z ; ~ )  - 1- b + ( Y ,  2 ;  0) -P-(y ,  z ;  O ) l +  O(a2) .  
A2 

As expected, the antisymmetric part tends to zero in the head-sea limit. The 
behaviour of the symmetric part is similar, since it is given by 

&(a) - - l - i s ina  

(2.276) 

where, when a = 0, the following identity also holds: 

P+(% 2; 0) +p-(y, 2 ;  0) = KO q5L0)(y, z ;  0) + fo(z). (2 .27~)  

In the shallow-water limit, the cross-section solution can be determined analytically 
and the same result, (2.276), can be obtained: see (2.19), (2.20) in I. This fact, and 
also the discussion to follow, gives confidence in the validity of (2.27), even without 
the demonstration in the Appendix. 

The cross-section solution is then regular in the limit a+O. The origin of the 
misunderstanding seems to be related to the fact that  q5T(y, z ;  a) -+ 0, when a + 0. This 
result could be anticipated from the following considerations : when a = 0, fo(z) is a 
solution of (2.3) and the incident wave is given by QtI =fo(z) (see (2.2)). For a 
symmetric body in a head sea, the 'radiation condition' (2.5) can be written in the 
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form # - Tfo(z) and, from the boundary condition on the body surface, one must 
have $ = - fo(z). Thus, #T = #jp,+# = 0, as indicated by (2.27b). 

If one observes that yfo(z) is also a solution of (2.3), one could specify the far-field 
behaviour 

(2.28) 

instead of (2.5), to obtain a non-trivial solution #T. In this case, the head-sea solution 
is given exactly by (2.27b), with U in place of -isina; see Appendix. Obviously, the 
solution, although non-trivial, cannot be determined, since the value of U is 
unknown. 

Ursell (1968) observed that the two-dimensional Green’s function is composed of 
two parts when a-+O: one that behaves like l /sina,  and the other that is regular in 
this limit. In his analysis, he discarded the first part and, considering only the regular 
part, he obtained solutions with the behaviour (2.28). The scattered wave, however, 
is represented by an integral over the body of the Green’s function multiplied by the 
source density a(y , z ;a ) .  Since the source density is proportional to the total 
potential, then a(y, z ; a) - 0 (sin a)t when a -+ 0;  see (2.27 b). In this circumstance, 
the contribution of the regular part of the Green’s function tends to zero, like the 
terms proportional to - i sin a in (2.7 b), and the contribution of the ‘irregular part ’, 
proportional to l /sina,  gives a finite limit for the scattered wave. 

In the slender-body theory, the potential $ T , s ( ~ ,  z ;  a) is multiplied by an unknown 
function S ( x ;  a), which is determined in the matching process. It can be shown that 
S ( x ; a )  behaves like l /sina when a+O, and so the product X(x;a)$,,,(y,z;a) is 
regular and non-zero when a = 0. This result, clearly, is a consequence of the 
regularity in a of both the slender-body theory and the cross-section problem. 

In the short-wave limit (KO -+ a), the full three-dimensional solution GT(x, y, z ;  a) 
should approach the cross-section solution #,(y, z ;  a). This is the classical ‘strip- 
theory approximation ’ that is thought to be valid only when a $; 0. Arguments to be 
given next show that this result is also correct in the head-sea limit. 

In fact, it is a well-known result (see Faltinsen 1971; Haren & Mei 1981) that S ( x ;  
0) - O((K,,z)-i)S when K o z  b 1, where S(z;O) is the slender-body multiplicative 
function in a head sea. This result indicates that @,(x, y, z ;  0) -+ 0, when KO -+ co or, 
in short, the head sea is refracted away by a slender body; see Ursell (1977). Since 
$,(y, z ; a) -+ 0, when a -+ 0, the above result allows one to write 

(2.29) 

for all incidence angles a. Or, in short, within this interpretation, the strip-theory 
approximation is the short-wave limit of the full three-dimensional solution, for 
arbitrary a. 

One could use Ursell’s solution in a head sea, with the unknown parameter U,  and 
match the inner and outer solutions in two steps: one when a > 0;  the other when 
a = 0. In this case, it  must be shown that the latter is the limit of the former when 
a+O, since the slender-body solution should necessarily be continuous in a. This 
procedure was used in I but, although producing the correct result, i t  is somewhat 

t Note, however, that Faltinsen (1971) used only the regular part of the Green’s function and 
imposed (2.28) with A ,  = KO m-. In this way he obtained a source density al(y, z )  =# Iima+, a(y, z ;  
a) = 0”. 

$ For a particular class of geometries (small draught) and in a certain range of frequencies. S(z; 
0) remains oscillatory when X +  03, with KO finite. If KO + 03, however, S(z; 0) + O ,  and so (2.29) 
continues to be valid. See Aranha & Sugaya (1985). 
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artificial. In  the present work, the cross-section solution &(y, z ;  a )  will be used, for 
all a, and the head-sea solution will come out naturally. This is not only a more direct 
approach but also it makes explicit the regularity of the cross-section solution in the 
head-sea limit. 

3. The inner solution and its outer expansion 
I n  the inner region, the transverse lengthscale is B = 1 and the longitudinal 

lengthscale is L = l / ~ .  If f(x, y, z )  is any flow or geometric variable, the slenderness 
assumption leads to the following estimate for the order of magnitude of the gradient 
of f(x, y, z) (see, (1.3)) : 

(3.1) - af - O f a ,  Vf - Olff- ax 

Observing that Nx is of order E in a slender body then, disregarding terms of order e2 
compared with 1,  one obtains the following set of equations in the inner region : 

together with the boundary conditions 

= o ;  z=-h .  
a@ 
az 
- 

(3.2b) 

I n  (3.2u), the terms proportional to  {a@/ax;N, }  are of relative order E and so, to 
leading order, (3.2) are coincident with the cross-section equations (2.3), (2.4). 
Obviously, the three-dimensional radiation condition (1.3) cannot be used in this 
context and so the solution of (3.2) cannot be completely determined. The inner 
solution will be designated by the suffix i and, correct to second order in the 
slenderness parameter, it is given by 

1 (3.3) 
@pi(x, y, 2 )  = @p(x, y, 2 )  + @jZ’(X, y, z ) ,  

@y)/@y - O(E). J 
I n  the nomenclature of the slender-body theory, {@il) ; @i2)} are called the leading- 
order and second-order inner solutions, respectively. Placing (3.3) into (3.2a), and 
separating terms of the same order in 8, one obtains two sets of ‘cross-section 
equations’ for @!’) and @I2). The equations, and their respective solutions, will be 
analysed in the following. 

3.1. The leading-order solution 
Since the terms proportional to {a@/ax;N,} are of relative order E ,  the leading-order 
solution satisfies the boundary conditions (3.2 b) and the following set of equations : 

(3.4) 

The potential @[’) is forced by the boundary condition on the body surface; see (3.4). 
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Since two boundary conditions are ignored (namely, the radiation conditions when 
y++ 00)  the most general solution of (3 .4)  and (3 .2b)  can be written as a sum of a 
particular solution with two linearly independent homogeneous solutions. 

The particular solution can be defined by the expression 

since satisfies all conditions in (3 .2b)  and (3 .4) .  Observing that the symmetric 
and antisymmetric parts of the cross-section total wave, {$T,S(y ,  z ;  a); $T,A(y ,  z ;  a)} 
respectively, are linearly independent functions that satisfy the homogeneous 
boundary condition on the body surface, the homogeneous solution of (3 .2b) ,  (3 .4)  
can be written in the form 

In the context of the cross-section problem (3 .2) ,  (3 .4) ,  { S , ( x ; a ) ; A , ( x ; a ) }  are two 
arbitrary ‘constants ’. Obviously, these ‘constants ’ should not be the same in 
different sections and this is the reason why both are functions of the x-section. If the 
body is not cylindrical, the cross-section geometry changes with x and so the total 
potential $T also does. T o  keep clear, however, that this is a two-dimensional 
solution, the z-dependence will not be made explicit in it. From (3 .5a,  b)  i t  follows 
that 

@i%, y, 2; a) = [S , (x;  a) $T&, 2; a) - cos (Kolvl sin a) f&)1 
+(sgn y)[A,(z;a)$,,.(y,z;a)-isin (Kolylsina) fo(z)]. ( 3 . 5 4  

These simple expressions for the particular and homogeneous solutions have been 
proposed by Newman (1978) and, in the following, the outer expansion of the 
leading-order inner solution will be elaborated. 

The matching between inner and outer solutions should be enforced in an overlap 
region, where B 4 y or 1 4 y / B  4 11s. This region can then be characterized by the 
relation Iyl/6= E-”, where 0 < v < 1, and 6 is the half-beam of the widest section 
(6 = @?). Observing that L2($T) = L$($) ,  for n 2 1, and introducing the definitions 

Since A, h > K ,  h > a(2n- 1) n, where h is the water depth (see (2.7), (2 .10) ) ,  then 

(3 .7b)  

in the overlap region Iyl/6 = E-”. The asymptotic theory is to be developed in the limit 
E + O  and both 6 and h are independent ofs. Expression (3 .7b)  shows then, that the 
evanescent terms are exponentially small i n  the overlap region. 

The outer expansion of the inner solution is just the asymptotic behaviour of the 
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inner solution in the overlap region. From the above result and ( 3 . 5 ~ )  it follows then 
(see also (2.253)) that 

#ll)(z, y, 2; a )  - {[Sl(z, a) (1 +Rs(a)) - 11 cos (KolvI sin a )  

+ iXl(z; a )  R,(a) sin (K&I sin a)} fo(z) 

+i[A,(x; a )  @,(a) + 1) - 11 sin (Kolyl sin a)> f&). 

+ (sgn 9) (A,(x; a)RA(a)  cos (KOlyl sin a )  

(3.8) 

Observe, again, that {Rs(a);BA(a)} are also functions of z if the body is not 
cylindrical. 

3.2. The second-order solution 
When (4.3) is pu t  into (4.2a), the resulting equations for @12) are given by 

( 3 . 9 ~ )  

(3.93) 

a w )  
ax 

V2@12) - (KO cos a)2 @i2) = - 2iK0 cos a J 

V@f) - nIOB = -~,Kocosa(q5,+~11))I,,. 

The most general solution of (4.23), (4.9) can again be written in the form 

@12'(% y, 2; a)  = [S,(z; 4 #T& 2; a) + #P,S(Y, 2; 4 1  

+ (sgny) a )  #T,A(Y,  z ;  a )  + # P , A ( Y ,  2; a)], (3.10) 
where {S2(x ; a )  ; A,(x ; a)} are the two arbitrary cross-section ' constants ' and q5p = 
#P,S+(sgny)q5p,A is a particular solution of (3.2b) and (3.9). (Again, q5p is a function 
of x;  since, however, it is a cross-section solution this dependence is omitted.) In the 
following the derivation of a convenient q5p will be elaborated. 

As in $2, #pf will designate the particular solution in the regions y 3 &band #p the 
particular solution in the finite fluid region A .  If r*(y, z ;  a )  is a particular solution of 
(3.9 a), with 

then, from the continuity condition 

one must have (see (2.9)) 
# p f ( + & z ; a )  = q5,(kti,z;a), 

(3.11 a) 

(3.11b) 

00 

$6 (y, z ; a) = r* (y, z ; a )  +L$(&) ei~osina(lg1-@ fo(z)+ L ~ ( # ~ ) e - ~ n ( ' g ' - ~ ) ~ n ( z ) .  ( 3 . 1 1 ~ )  

Since a@;')/ax is expressed by means of a series in the regions y $ + b  the function 
P ( y ,  z ;  a )  can be determined analytically. In fact, if 

. cosa d 
Co,s(y,a) = -1-IyI sin a sin (KolyI s i n a ) ~ [ S , ( x ; a ) ( 1  +Rs(a))- l ]  

n-1 

cos a 
KO sin2 a sin a sin (Kolyl sina)--lyl cos(K,lylsina) (3.11d) 

and 

cos a d 
sin a dx IyI cos (Kolyl sin a )  - [Al(x ; a) (RA(a) + 1 )  - 13, (3.12 6 )  -- 
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then [C,,,(y;a)fC,,A(y;a)] fo(z) is a solution of ( 3 . 9 ~ )  when @il) is given by its 
asymptotic expression (3.8). Notice that the homogeneous term, proportional to sin 
(K,lylsina) in (3.12a), is needed to render Co,s(y;a) regular in the limit a+O. (A 
homogeneous term is not needed for 19,,~(y;a), since the antisymmetric part is 
known to be zero in a head sea.) Similar expressions can be obtained for the 
evanescent terms of $jl). In fact, if 

( 3 . 1 3 ~ )  

(3.13b) 

then Z [C,,,(y; a) f C,,,(y, a ) ]  f n ( z )  is a solution of (3.9a), when @[') is given by ( 3 . 5 ~ )  
and ( 3 . 7 ~ ) .  Introducing the definitions 

I - d  
An dx [81(~; a)Ln,S($T)I ,  

C,,,(y;a) = - i o  cos a I y I  e-An(lYI-b) - 

- d  
. K O  'OS a lY l  e-&(lul-W - 

dx a)Ln,A($T)I ,  c,,A(y;a) = 1p 
An 

Ci(y ;a)  = cn,S(y;@)fC,,A(y;a); n = o , l , . . . ,  
it  is now an easy task to verify that 

r k  (9, z ; a) = [c$ (y, a) - c$ (6; a) eigosina(IYI-6) 1 f o ( 4  

+ c [Ci(y;a)-C2(6;a)e- '  n (1 yt-6)] f n ( z ) ,  (3 .13~)  
n-1 

is a solution of (3.2b), (3.9a), (3.11u), in the regions y @ +6. Observing that 

with 

then, imposing continuity of velocity on y = k6, one obtains 

m m 

"h ( ,b , z ;a )  = +iK,sinaL$($,)f,(Z) T c h n ( a ) L i ( # p ) f n ( z ) +  c y i f f i ( z ) .  
a Y  n-1 n-1 

(3 .14~)  

In the finite fluid region A ,  $p(y, z ; a )  satisfies (3.2b), (3.9) and (3.14) on its boundary 
y = -tK. Multiplying the field equation (3.9a) by a function Y(y, z )  and integrating by 
parts in A ,  the following identity can be derived: 

G($p; u l ) + ~ , s i n a [ ~ , f ( $ p ) ~ , f ( u l ) + ~ , ( $ , ) ~ , ( ~ Y ) I  = KO v,(ul), (3.154 

where G(.;.) is given by (2.14) and 

m 

KO v,( Y)  = [y:L:( ul) - y;L;(Y)l + 2iK, COS a SJ: YdA 
n-0 

-*,KO cos a 12, ($I + @il)) Y daB. (3.15b) 
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The formal similarity between (2.13) and ( 3 . 1 5 ~ )  allows one to write directly the final 
expression for $ p ( y , z ;  a ) .  In  fact, if $c)(y, x ;  a) is the solution of the weak equation 
(see (2.21)) 

Q($kl) ; y e )  = V,( y e ) ,  all Y/,E W,(A), (3.16a) 

and (see ( 2 . 2 3 ~ ) )  
(3.16b) 

then (see (2.20)) 

where L$($,) are solutions of the linear system (see (2.22)) 

(3.16d) 

Obviously, the particular solution $p(y, z ;  a) depends on the yet unknown constants 
(S,(x; a) ; A,(x ; a)) of the leading-order solution. Once they are determined, &(y, z ;  
a) can be determined from the leading-order matching with the outer solution by 
means of (3.16). If 

( 3 . 1 7 ~ )  

the outer expansion of the second-order inner solution is given (see (2.253), (3.10), 
(3.11c), (3.13b, c ) )  by 

11 Ds(a) = [!j(Li($p) + L ; ( $ ~ ) )  - ~,, , (6;  a)] e-iKa5sina 

DA(a) = [!j(LL($p) +Li($p)) - ~ ~ , ~ ( 6 ;  a)] e-iKo5sina 

@FYx, y, x ;  a) - {[S,(x; 01) (1 +&(a)) +Ds(a))I cos (K,Iyl sin&) 

+ i(S,(x; a)R,(a) +D,(a)) sin (K,lyl sin a)} fo(z) 

+ ( s g n y ) ( ( A , ( x ; ~ ) R , ( a ) + D A ( a ) f c O s  (Kol~I sina) 

+i[A,(x; a) (RA(a) + 1) + l ) A ( a ) ]  sin (Kolyl sin a)} fo(z) 

+ [CO,S(Y, a) + (sgny) co, A(?/; 4 1  f&). (3.17 b) 

Again, the contribution of the evanescent terms is exponentially small in the overlap 
region. 

4. The outer solution and its inner expansion 
In the outer region (Iyl/L 2 0 ( 1 ) ) ,  the body shrinks to a line and the boundary 

condition (1.3b) is lost. The solution in this region, named the outer solution, can 
then be represented by a distribution of singularities (poles, dipoles, etc.) along the 
line 0 < x < L,  since each singularity satisfies (1.3a, c). (In reality, the singularities 
should be distributed along O+ < x < L- to avoid the end points x = 0;  x = L ; see 
(6.2b) and ( 7 . 3 4 ~ )  in I. This observation seems to be consistent, within an error 2, 
with Geer’s (1975) work, where the outer solution is defined on 6, < x < L-6, with 
6,, 6, of order P.)  The linear densities of these singularities are unknown, reminiscent 
of the unknown body boundary condition. They will be determined by matching 
with the inner solution, which contains just two unknowns { S ( x ;  a) ; A ( x ;  a)}; see $3. 
So, there must exist an even singularity (pole), with density &(x; a), and another odd 
one (dipole), with densityM(x; a). The first is associated with S(x ;  a) and the second 
with A(x;a) .  
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Expanding the densities in the small parameter e, one may write 
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(4.1 a) 

(4.1 b) 

The outer solution, designated by the suffix 0, can be written then in the following 
way : 

Go@, y, z ;  4 = ST d5[ Q(5;  01) + K , M ( ~ ;  a)  - G(z- 6 ,  Y, z ) ,  

&(z; a )  = & 1 ( 2 ;  a )  + &&; a) ,  

M ( z  ; a )  = M1(z ; a )  +M& ; a )  

{Q2/&1 ; M 2 / M , I  - O ( 4 .  

- 

1 

aY 

where G(. , . , .) is a Green's function multiplied by the constant factor l/fo(0), or 

(4.1 c) 

~ ( z , y ,  z ;  a )  = - - H P ) ( K , ( X ~ + ~ ~ ) ) " )  e-iKnzcosa [ I  

In  (4.1c), H p ) (  .) is Hankel's function and xo(z) = iiHil)(iz) is the modified Bessel 
function; see Abramowitz & Stegun (1964). The term within brackets in the 
expression for B(. , , , .) is just the Green's function in shallow water, see (2.6) in I, and 
E(z ,  y, z ;  a )  is the part of the finite-depth Green's function associated with the 
evanescent modes. 

The inner expansion of the outer solution corresponds to determining the 
asymptotic behaviour of (4.lb) when Iyl/L -4 1 or, in short, in the overlap region, 
where Iyl/L = dl-"), with 0 < v < 1. The asymptotic behaviour of the evanescent 

will be elaborated first. As usual, one should take Fourier transform E*(y, z ; K ,  a )  of 
( 4 . 2 ~ )  to obtain its behaviour when lyl/L -4 1. From Erdely (1954) and the 
convolution theorem i t  follows that 

In the overlap region, Iyl/6 = c", 0 < v < 1, and so the contribution of the evanescent 
part @(z, y, z ;  a )  is, again, exponentially small. The remaining term in (4.1 b) is just 
the outer solution in shallow water, multiplied by fo(z). Its  inner expansion has been 
elaborated in I and the results derived there can be used directly here. I n  this way, 
if 

then the inner expansion of the outer solution can be written (see (7.8) in I) in the 

( 4 . 4 ~ )  
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where the leading-order term is given by 
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The second-order term can be written in the form 

@?'(x, y, 2; a) = @o,H(x, y, 2; a)  + @o,p(x, Y, 2; a) ,  (4.4c) 
with 

Qo, H(x, y, z ; a )  = { [ - iil,(x ; a)  cos ( ~ ~ l y l  sina) + AW sin ( ~ ~ y l  sin a )  
2 KO sin a 

and 

cos a cos a dQ /dx 
@o,P(x , y , z ;a )  = -1' sin (Kolyl sin a )  -- IyI cos (K,,lyl sin a) --k- {[ "K,sin2a sin a KO sin a 

IyI sin (Kolyl sin a) 
dx 

1 cosa 
2 sina 

(4.4e) 

It is important to observe that the inner expansion (4.4), correct with an error factor 
of the form [1+ 0(e2)], can be obtained only if the error is measured in the space of 
the generalized functions ; see I. This point will be reviewed and further discussed in 
$6 of the present work. 

5. Matching 
In the overlap region, the slender-body solution is described either by the outer 

expansion of the inner solution (see (3.81, (3.17b)) or else by the inner expansion of 
the outer solution (see (4.4)). Matching these two expressions allows one to determine 
the unknowns {S,(x ; a)  ; A  ,(x ; a )  ; Q1(x; a )  ;Ml(x ; a)}  and {X,(x ; a )  ; A 2 ( x ;  a) ; Q,(z ; a) ; 
M,(z;a)}.  This is the purpose of the present section. 

5.1. Leading-order matching 
From (3.8) and (4.4b) it follows that 

-*iI1(x ; a )  = S,(x ; a) (1 +R,(a)) - 1,  
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or 

a) 1 S1(x; a) = -+i-- 
KO sin a &(a) ’ 

. &1@; 01) 1 +&(a) +ill(. ; a) = + l ~  + 1. 
Kosina R,(a) 

( 5 . 2 ~ )  

(5 .2b)  

( 5 . 2 ~ )  

(5 .2d)  

To leading order, strip theory is recovered for the odd solution; see (5 .2a ,  b) .  This is 
a standard behaviour in existing slender-body theories. For the even solution, the 
integral equation (5 .2d)  (see ( 4 . 3 ) )  implies a longitudinal correction to strip theory. 
From (2 .273) ,  the integral equation (5 .2d)  is regular in the head-sea limit and so it 
is the inner solution ( 3 . 5 ~ ) .  With the help of (2.27 b, c )  one can see that when a = 0, 
(5 .2d)  and ( 3 . 5 ~ )  take the forms 

The regularity in the head-sea limit of the slender-body solution is a consequence of 
the regular behaviour of the cross-section problem when a + 0. 

5.2.  Second-order matching 

Once {A,(x;  a) ; S1(x; a)} are determined the particular solution q5p(y, z ;  a) = q5p,s(y, z ;  
a) + (sgn y) $ P , A ( y ,  z ; a) of the second-order inner problem can be computed. With the 
help of (5 .1)  one can easily verify that 

(5 .4)  
where @o,p(x, y ,  z ;  a) is a part of the inner expansion of the outer solution, see (4 .4e) ,  
and the right-hand side of (5 .4)  is a corresponding part of the outer expansion of the 
inner solution; see (3.121, (3.17b).  Matching the remaining terms of (3.17b) with 
( 4 . 4 d ) ,  the following equations are obtained : 

A,(x;a)  = 0 ,  ( 5 . 5 ~ )  

M 2 ( x ;  a) = 2K0 D A ( a ) t  (5 .5b)  

‘0, P(x, y, ; a) = [ c O , S ( Y  ; a) + (sgn Y )  cO,  A ( Y ;  

(5 .5c)  

(5 .2d)  

It should be observed that (5 .5)  has a behaviour similar to (5 .2) .  The integral 
equations (5 .2d)  and ( 5 . 5 d ) ,  for example, have the same structure and only the 
forcing terms are different. The result A l ( x ; a )  = 1 is consistent with A 2 ( x ; a )  = 0: 
both imply that the odd solution is determined by a cross-section problem, the 
longitudinal interaction appearing only through the forcing term M/ax  of the 
particular cross-section solution $p(y, z ;  a); see (3.15b).  If one recalls the result 
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valid when sina - O( 1) and K,B 2 ( l ) ,  see I, then it follows from (5.2) and (5.5) that 

S1(x;a) - 1, S z ( x ; a )  N 0 (5.7) 

in this case. Obviously, (5.7) is consistent with ( 5 . 2 ~ )  and ( 5 . 5 ~ )  and i t  displays the 
cross-section feature of the even solution when the waves are short and sina - O(1). 

There is a discrepancy between the kernel of the present slender-body theory, 
given by Hankel’s function (see (4.3)), and the one derived in Newman-Sclavounos’ 
infinite-depth theory. This point will be discussed next. 

The finite-depth theory should recover the infinite-depth result in the high- 
frequency limit and the shallow-water result in the low-frequency limit. Since 
Newman-Sclavounos’ kernel approaches Hankel’s function at high frequency and 
this is also the kernel of the slender-body theory in shallow water, see I, then the 
kernel of the finite-depth theory should approach Hankel’s function a t  least in the 
high- and low-frequency limits. Not surprisingly, it coincides with this function in 
the whole range of frequencies. 

The discrepancy between the two kernels at low frequency is certainly expected : 
it  reflects the physical difference between the wave behaviour in finite and infinite 
depth, when w - 0 .  Consider, for instance, the heaving of a floating body at  low 
frequency. In finite depth, the far-field behaviour is seen as a cylindrical wave, 
inducing an essentially horizontal flow ; in infinite depth, the far-field behaviour is 
seen as a spherical wave, inducing a radial flow. Since the added mass is proportional 
to the kinetic energy, one may expect an unbounded added mass in finite depth, 
when w + 0, although the added mass should remain finite when the water depth is 
infinite. This result is analysed in Aranha (1988), where it is also shown that the 
present slender-body theory recovers the low-frequency asymptotic behaviour of 
heave added mass in finite depth. 

The only circumstance where the present slender-body theory is not correct is 
when it is assumed that the water depth h is related to the slenderness parameter e 
by an expression of the form h - O( l /e) .  Since, however, the asymptotic theory is to 
be derived in the limit e + O  this assumption implies, in fact, that the water depth is 
infinite. Barrresen & Faltinsen (1985) started their analysis from the Fourier 
transform of the finite-depth Green’s function instead of using the series expansion 
(4.12 c ) .  Thus, they have followed Newman-Sclavounos’ approach to derive the inner 
expansion of the outer solution, with a conceptual advantage in relation to the 
theory presented here: their approach is able to cover both the finite- and infinite- 
depth cases. The drawback, however, is that the kernel of the related slender-body 
integral equation is much more complex. This not only makes it more cumbersome 
to use their theory but also makes i t  more difficult to deduce some further theoretical 
results such as the ones to be presented next. 

6. The error measure of the second-order term 
I n  this work an asymptotic slender-body theory has been derived, where terms of 

order e2 were disregarded compared to  1. The purpose of the present section is to 
evaluate the actual order of magnitude of the second-order term and to indicate 
situations where the leading-order solution already has an error factor of the form 

A glance at  the field equation ( 1 . 3 ~ )  and boundary condition (1.3 6 )  indicates that, 
in the inner region, the apparent error factor of the leading-order solution is of the 
form [l +0(e2 ) ]  when cosa = 0 ;  see also (3.1) and (3.4). To confirm this behaviour, 

[ 1 + O(E2)]. 
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one must look at the inner expansion of the outer solution, since this term may 
introduce a correction of smaller order than e2. This is the case, for example, for the 
lifting-line theory, where the downwash introduces a correction of order E in the inner 
region; see Van Dyke (1975) for details. In  the present case, @,,. = 0 when cosa = 

0, see (4.4e), and so the error factor of the leading-order solution is, in fact, of the 
form [ l  + 0 ( e 2 ) ]  when cosa = 0. Physically, this case covers not only beam-sea 
diffraction but also all radiation problems. 

In  reality, the inner and outer second-order particular solutions have a perfect 
matching (see (5.4)) and this shows that one need look only to the inner problem to 
evaluate the relative magnitude of the second- and leading-order solutions. I n  view 
of this, attention will be restricted next to the diffraction of an oblique sea by a 
cylindr~cal body. 

In this case N ,  = 0 when 0 < x < L and the relative magnitude of @?) and @ll) can 
be gauged by the forcing terms of (3.4) and ( 3 . 9 ~ ) .  (Obviously, N, = +_ 1 when x = 
0 or x = L. The behaviour near the ends will be discussed later in this section.) It 
follows that 

(6 . la)  

where is considered of order 1.  For long waves ( K o L  < O(1)) the scattering 
potential @I1) is of order E (see (3.4) and also I )  and so @il) - O(e2) .  This term can then 
be disregarded when compared with the incident wave, of order 1 .  It remains to 
analyse the behaviour of the second-order term in the short-wave regime (KoB > 
O ( 1 ) )  and, to  do so, i t  is convenient to  write (6.1 a )  in a different form. In  fact, for a 
cylindrical body the cross-section functions {#T, s( y, z ; a) ,  #T, A (  y, z ; a )  ;&(a)} do not 
change with x and one obtains from ( 3 . 5 ~ )  and (5.2) 

(6.1 b )  

Recalling (2.27b) and using (6.lb) in (6 . la ) ,  the following order of magnitude can be 
derived : 

For short waves and sin a - O( l),  the strip-theory approximation is recovered with 
a relative error of order E ;  see (5.7) and I for more details. I n  this case one may write 
(see ( 5 . 2 ~ )  and (5.7)) 

(6.3) -- Q1"; a )  - 2i sin &,(a) + tzj(Z; a) ,  
KO 

where f ( Z ;  a )  - 0(1) is a 'flow function'. From the basic assumption of the slender- 
body theory, see (3.1), df/dz should be of order 1 and so (dQl/dz)/Ko - O ( E ) .  Using 
this result in (6.2) one finds that @i2) - O(e2)  or, in short, the leading-order term has, 
again, an error factor of the form [1+  0 ( e 2 ) ] .  

The formal proof of this result can be obtained if some auxiliary results, derived 
in I, are used. In  particular, it  has been shown there (see (A 14) in I) that  

( 6 . 4 ~ )  



152 J .  ,4. P .  Aranha and C .  A .  Martins 

for 0 < z < t =  1 and KoB 2 O(1). If now the equality (5 .2d)  (or ( 5 . 3 ) )  is 
differentiated with respect to z = x/L and ( 6 . 4 ~ )  is used, one obtains 

-- dQ1 @ ; a )  - O(E): 
KO dZ 

(6.4b) 

when K,B 2 O(1). This result, together with (6 .2) ,  shows that the leading-order term 
of the present slender-body theory has an error factor of the form [l +O(a2), when the body 
is cylindrical. Before this result is generalized to a broad class of geometries it seems 
worth discussing under which conditions the fundamental result ( 6 . 4 ~ )  has been 
derived. 

The slender-body theory is asymptotic in essence and is intrinsically concerned 
with the size of the error factor. Implicitly it is assumed that one has an unequivocal 
way to measure the error and, although never made explicit, the metric of the 
continuous functions seems to be always understood. Or, in a more formal way : it is 
said that 

when 

f(z) = g ( z )  [ 1 +  O(€f9)] ; 0 < z < L, ( 6 . 5 ~ )  

(6.5b) 

The notation = will be used in this section to define the error measure ( 6 . 5 ~ ) .  It was 
found in I that this measure is not suitable for developing the theory up to the second 
order. In fact, in the inner expansion of the outer solution a function D3(z)  appeared 
naturally (see (6 .6)  in I), where D5(Z) is of order e in a neighbourhood c of the ends 
of order ez in the rest of the body. It would be desirable that this function were of 
order e2 and, indeed, it is of this order of magnitude almost everywhere. It was 
thought that metric (6 .5) ,  where Dj(Z) - O(s), was too severe, since it penalizes its 
overall measure by its local behaviour in a very small region. 

This particular behaviour of D j ( z )  is not unusual. The representation of the correct 
mathematical solution by means of the slender-body theory is marked by strong 
mathematical non-uniformities (see Ogilvie 1977) specially near the ends (5 = 0;  z = 
E} of the body. These non-uniformities, not present in the actual solution, are a 
drawback of the slender-body representation, and they should be filtered out in order 
that the slender-body solution can represent more closely the actual solution. 
Technically, this filtering process can be introduced if a different measure of the 
asymptotic error is used. If one observes further that, to develop the inner expansion 
of the outer solution, the Fourier transforms of (&(x;a);M(x;a)) and of their 
derivatives must be computed, and that these transforms exist only in the space of 
generalized functions, a clue is given to  the choice of the proper error measure. 

In this way, a second measure of the error was introduced in I with the following 
definition: it is said that 

f(Z) = g ( z ) [ l  + O ( d l ,  ( 6 . 6 ~ )  

when If(%) - g ( Z ) ]  Y(Z)  dZ - O ( d )  ; E = x/L, (6.6b) c 
for all ‘good functions ’ Y(z). The good functions are the test functions in the space 
of the generalized functions and are defined in Lighthill (1958). Although (6 .6)  is not 
a metric in the strict sense, to keep the notation short it will be called the metric of 
the generalized functions. 
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With (6.6),  not only is the function D 3 ( i )  described above of order c2 but also ( 6 . 4 ~ )  
can be proven. In fact, if 

( 6 . 7 ~ )  

then a direct differentiation of (4.3) shows that 

+ [Ql(0) Go(Z; a) -Q1(L) Go(E-Z;  a)]. (6.7b) 

The integral in (6.7) has exactly the behaviour shown on the right hand side of (6.4a), 
see I, and it remains to analyse the function Go(z; a). At high frequency (KoB 2 O( 1) ; 
KO 2 O ( ~ / E ) ) ,  G0(z; a) is rapidly oscillatory and its effect on the measure (6.6b) should 
be restricted to the immediate neighbourhood of i = 0. In fact, it has been shown (see 
the Appendix of I) that 

( I + o ( ~ / K J ) ;  sina - o(I), 
( 6 . 7 ~ )  

when KO 4 1. Now, 6(Z) = S ( t - 3 )  = 0 when 0 < 
so ( 6 . 4 ~ )  follows. 

measure. On the one hand, metric (6.6) deals with a distribution 

< (see Lighthill 1958 p. 25) and 

This example can be helpful in elucidating a subtle aspect of the present error 

Q(y3 = Q(z) V(z)dz 

but, in reality, the interest is centred on the source density &(x) that induces such a 
distribution. There are several different functions {Q(x)} that induce the same 
distribution Q(!P), with an acceptable error O ( 6 )  and, from among them, the 
smoother one must be chosen to satisfy (3.1). In the example analysed the 
distribution Go coincides with a function of O(E)  when 0 < z < L = 1. 

The slender-body solution is intrinsically discontinuous at  the ends (recall the 
behaviour of N,) and its derivative contains Dirac &functions there. The 
discontinuity is, however, artificial and for this reason the inner solution must be 
enforced only in the interior of the body (0 < z < ,T = 1). A physical explanation for 
the existing S-functions can be given in the following terms: a local correction 
function A@ must be added to the slender-body solution to render it continuous at 
the ends, and the question is to understand how this function affects the potential in 
a section i f a r  from the ends ( ( ~ ; E - z )  > O ( E ) ) .  But A@ < O(1) and it has support in 
a region of size E .  So its effect on sections distant from {z = 0;  Z = L}  is seen as that 
of a point source, with intensity E ,  located a t  these points. In the plane y = 0 they 
are described then by the function e[Q0 GJz; a) + Q1 G,,(Z-L; a)] fo(z) (see ( 6 . 7 ~ ) )  
since the remaining evanescent terms are exponentially small. But Go(Z; a) is rapidly 
oscillatory and its net effect is of higher order. This result is formalized by metric 
(6.6),  where G0(z; a) is identified with a &function with intensity O(l/Ko) (see ( 6 . 7 ~ ) ) .  
Or, in short, the global effect of A@ is O(e/K0) < 0 ( e 2 ) ,  for KO 2 0 ( 1 / ~ ) ,  where metric 
(6.6) has been used again. 

Thus, not only is the appearance of S-functions in the slender-body theory 
explained but also it is shown why the global effect (metric (6 .6) )  of the error A@ is 

--m 



154 J .  A .  P. Aranha and C. A .  Martins 

of order e2. The local analysis (metric (6.5)) is much more difficult, but some tentative 
conclusions can be reached. In  fact, if Ge(i?, y, z )  is the exact solution, Gfi?, y, z )  is 
the leading-order slender-body approximation and A@ d j e  - @ is the error, then 
a A @ / Z  - O(1) when (z;L-Z) > O ( E ) ,  since the z-derivatives of d j e  and dj are both 
of order 1 in this region. If the test function Y(z) has support in the region ( E ; E - z )  
> O(e), then the result A@ - O(e2)  in (6.6),  together with the fact that aA@/& - O(1) 
in this region, implies that A@ = O(e2)  when (z;L-z) > O ( E ) .  

In  a neighbourhood e of the ends, the gradient of dje ,  measured by (6.5),  ca,n be 
locally large and the local error can change drastically with KO. Assuming that in 
these regions A@ is given by the wave-like function ?(If,) exp (x,, a), then y@,) < 
O(1) since both Ge and @a are of order 1 in the metric (6.5). Observing that the 
integral of ?(KO) exp (iKoZ), in an order-e region, is of order y(R,)/R, when If, 2 
O(l/e),  then the restriction that A@ - O(e2)  in (6.6) is met if ?(I?,) < O(c21f0). This 
reasoning suggests that the error A@(z, y, x )  has the following local behaviour 
throughout the extension of the body : 

(6.8b) with 

This local behaviour has been numerically verified in I in the range of frequencies 
KO < O( 1 / ~ )  and it will be again in the present case; see $7 .  

So far, a cylinder of length L = 1 has been analysed but the conclusions derived 
above can be extended to a class of geometries that are close, in some sense, to 
cylinders. Since this analysis is restricted to the second-order term, of relative order 
6 ,  this class can be close to the cylinders by an order-€ term, where the difference in 
geometry can be measured in (6.6). Let 

C,(y,z)= 1; O < z < E  ( 6 . 9 ~ )  

be the equation of a cylinder. A body is said to have an almost uniform cross-section 
if its geometry is defined by the equation 

1 
? ( I f o )  < min { ~ ( E ~ K , , )  ; O( 1)) ; If, = --KO. 

€ 

C(z, y, 4 = 1, (6.9b) 
where (see $8.5 in I) 

(i) 

with { A  ; 21 O ( @ ,  f(z, y, 2 )  - O(1) ; 

C(E, y, z )  = C,(y, 2 )  + A f ( Z ,  y, 2 )  ; LT< z < L- d 

(ii) C(E, y, x )  is arbitrary in the regions 0 < 3 < J ; L - d <  < L. The main results 
concerning error measure derived here can be extended to  this class of geometries, as 
indicated in 1. Since the majority of slender structures used in the offshore industry 
have an almost uniform cross-section, the practically important conclusion of this 
work is the following : the leading-order slender-body solution has an error factor of 
the form [1+ O(e2)]  for these structures. Obviously this error factor, measured by 
(6.6), will be observed only for global quantities such as the added mass, radiation 
damping, exciting forces, etc. If one is interested in some local quantities-for 
example, in the pressure at a given point - the observed error factor should be 
measured by (6.5) and it can be spoiled by some local features near the ends ; see (6.8). 
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7. Numerical experiments 
To corroborate the main conclusions of the present theory a few numerical 

examples, comparing the results from slender-body and the full three-dimensional 
theories, should be analysed. Obviously, the three-dimensional equation must be 
solved numerically with great accuracy. To make this task easier a particular 
geometry should be used and so a rectangular raft in deep water was chosen. The 
water depth was so large that the infinite-depth dispersion relation, w:/g = K O ,  was 
essentially satisfied for all frequencies analysed. In  this case, not only the geometry 
but also the Green’s function are simple (see Harm & Mei 1981) and successive 
numerical approximations can be determined with minimal computational cost. 
These solutions have been computed for two different meshes and comparing the 
results a numerical error smaller than 1 % could be estimated. 

As in I, the error of slender-body theory is large for the symmetric part of the 
diffracted potential, and if {H,(x) ; H a @ ) }  are the average values, on section x, of the 
potentials from the full and slender-bodies theories, respectively, then the error E(z )  
is defined by the expression E ( x )  = IH,(x) -Ha(x)l/lHe(x)l. In  tables 1 and 2, F K ;  ST; 
SBT stand for the errors of’ Froude-Krylov, strip and slender-body theories, 
respectively. 

Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Average 

Error FK Error ST Error SBT 

9.1’ 16.4 6.3 
8.7 15.6 4.1 
9.2 15.5 3.1 
9.8 15.8 2.4 

10.4 16.1 2.0 
10.9 16.5 1.8 
11.3 16.9 1.6 
11.5 17.3 1.5 
11.7 17.7 1.4 
11.7 18.1 1.4 
11.6 18.4 1.5 
11.3 18.7 1.6 
10.9 18.9 1.8 
10.2 19.1 2.2 
9.1 19.1 2.8 
7.7 19.1 3.8 
5.6 18.8 6.0 

10.4 % 17.3% 2.6% 

TABLE 1. Error for long waves (KO L = 1 ;a = 45’). Rectangr-x plate at the free surface ; 
B = 20 m, L = 100 rn (c = 0.20), h = 500 m. 

The results shown in tables 1 , 2  follow closely those obtained in I, with some minor 
differences. This is why only one incidence direction (a = 45’) has been analysed. 

For long waves the error of the slender-body theory is of order s2(s2 = 4.0% in this 
case) but it is greater than that observed in I .  The reason is simply that diffraction 
is more important now than it was there, as a comparison between the errors in the 
Froude-Krilov approximation shows. Strip theory for long waves also gives the 
predicted order E = 20 % error but it should be noticed that in this regime this theory 
is worse than the Froude-Krilov approximation (see I). 

For short waves the diffraction is an order-1 effect, as the order-1 error in 

6 FLM 216 
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Section Error FK Error ST Error SBT 

0 32.6 60.7 1.7 
1 56.4 54.9 3.2 
2 73.0 51.6 1.8 
3 85.3 48.7 1.3 
4 94.5 45.4 1.2 
5 101.8 41.3 1.3 
6 108.4 36.3 1.4 
7 115.0 30.9 1.4 
8 122.6 25.7 1.5 
9 130.7 21.6 2.0 

10 140.0 20.4 2.6 
11 149.6 22.6 3.5 
12 158.5 27.2 4.4 
13 164.2 32.5 5.4 
14 162.2 36.2 6.0 
15 145.9 35.9 6.0 
16 106.9 30.2 5.9 

Average 112.4 Yo 36.7 Yo 2.9 Yo 

TABLE 2. Error for short waves (K,B = 1 ;a = 45"). Rectangular plate at  the free surface ; 
B = 20 m, L = 100 m (e = 0.20), h = 500 m. 

Froude-Krilov theory shows. The error in the strip theory is of order e - in reality 
1.8 greater than this value on average - and the error of the slender-body theory is 
of order e2 = 4.0% - in reality 0.75 smaller than this value, on average. So the 
longitudinal flow interaction, described by (5.2d), improves the strip-theory solution 
by more than 10 times on average. Near the ends of this cylindrical body the error 
is of order 6% and the local error behaviour follows closely that indicated in (6.8). 

These numerical results, as those presented in I, seem to confirm the main 
predictions of the slender-body theory elaborated here. 

Appendix. The head-sea limit 
The purpose of this Appendix is to prove (2.27) and to show that the head-sea 

solution that satisfies the far-field condition (2.28), is given by (2.27 b) with U in place 
of -i sina. The cross-section diffraction problem is described by the bilinear form 
G ( Y ,  @;a) and let G , , ( Y ; @ )  be this form when a = 0. From (2.10), (2.14) it follows 
that 

when a -4 1. Using this expression in (2.19), (2.20), (2.21) one obtains 

G(Y,@;a)  = Go(!P;@)[l+O(az)], (A 1) 

p + ( y , z ; a )  =p*(y , z ;o )+o(€2) .  (A 2a) 

The scattering matrix is determined by the two coefficients {a, (a) ; a2(a)}; see (2.23~) .  
If {A,; At> are eigenvalues of this matrix in head sea (see (2.26)) the following relation 
can be derived from (A 2a) : 
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With an error of order a2, the inverse of the scattering matrix is given by 

. (A2c) 

Let the even and odd functions, (p,(y, z )  ;p,(y, z ) }  respectively, be defined by the 
expressions 

$(Al + A , )  - i sin a 

-$(A,  - A z )  1 $(A, + A 2 )  - i s ina 

--$(4-4) 

1 A(a)-l= 

where (2 .17a)  and the definition of p * ( y ,  z ;  0 )  given in (2.20) have been used. From 
(2 .17a) ,  (2.19) and (2.21) i t  follows that 

see (2.16). From (A 3a,  b)  one obtains 

y e )  = ; y e )  = 0, all ul, E we(A)* (A 3 4  

Since $ z ( y ,  z ;  0) f $;(y, z ;  0) E W,(A), the following expression can be derived from 
(A 3a, c) and (A 2 b ) :  

(A 4) 

1 1 
-Go(fo;ps) = -Go(Ps;Ps) = 2 4  
KO KO 

KO KO 

1 1 
-GO(!//6fO;p.4) =-'G,(PA;pA) = 2A2.  

By partial integration in the region A one can easily check, from the definition (2.14), 

where B is the cross-section contour line and L$(Y) are defined in (2.9). From the 
expression for the incident wave (see ( 2 . 2 ) ) ,  

$dy, 2 ;  a) = f&) +ao y sin fo(z) + 0b2), (A 5 b )  

and (2.15) one obtains 

&(Y;a)  = -- G n ,  YdiB-is ina 
K O  ' S  L1B dz 

With the help of (A 5 a )  the above expression can be written in the form 
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Since G($Lo), Ye;a)  = &(Ye;a) ,  see (2.21), then from (A l ) ,  (A 3b) and (A 5c) ,  the 
following expressions can be derived : 

KO $LO'(y, 2; a )  = KO $L0YY, ; 0) + iK, 6sin a[&&, 2; 0) - $,(y, 2; 0)ll 

KO $:o'(y, 2; 0) = #:(y, z ;  0) + $&!, 2; 0). 
(A 6) 

From this last expression and (A 3a)  it follows that 

p+@, 2 ; 0) +p-(y, 2; 0) = KO &!Yy> z ; 0) + f&). 

V$(a)  = & ( p ' ( y , z ; a ) ; a )  = & ( p ' ( y , z ; 0 ) ; a ) + O ( a 2 ) ,  

(A 7)  

(A 8 a )  

Using the definition (2.23) and (A l ) ,  

and observing that p'(y, Z ;  0 )  = 0.5 (p,(y, z )  +pA(y, z ) )  (see (A 3a)) one obtains 

To derive this last expression, ( A  5c)  has been used with L$(p,)  = k 1 (see (A 3a)). 
Placing (A 4) into (A 8 b )  the following simple expression for V$(a)  can be obtained: 

V$(a)  = -A,kisinaA, ---K,b +O(a2).  (A 9) c, -1 
From (2.27), (A 2c) and (A 9) it follows that 

(A 10) 
sin 01 

A$(ct) =-l-i----kisina 
4 

Placing (A 10) into (2.11), ( 2 . 2 5 ~ )  one obtains 

&,(a) =-1-isinct --K,b +O(a2) .  (t -1 J 
If the incident wave ( A  5b)  is added to (2.20) one has 

$,(y;z;a)  = K , $ ~ o ' ( y , z ; a ) + ~ ( A , + + A , ) p , ( y , z ) + ~ ( A , f - A , ) p A ( y , x )  

+fo(z)+iKoysinafO(z)+O(a2); ( A  12a) 

See also (A 2a) and (A 3a). The even and odd parts of &(y, z ;  a) can then be written 
in the form I . sin a 

4 $T,S(Y, 2 ;  4 = --1--@+(y, z ;  0) +p-(y, 2; 011, 

(A 12b) 

where (A 3a), (A 6) ,  (A 7 )  and (A 10) have been used to derive (A 12b) from 
(A 12a). From (A 7) ,  (A 11)  and (A 12b) one obtains expression (2.27). 

The solution in a head sea is even in y and so A ,  = A$ = L$($).  Using this 
expression in (2.20) and observing that $I =f,(z) when a = 0 (see ( A  5 b ) ) ,  then 

(A 13) 
$T(Y, 2 ;  0) = (A ,  + 1 )  b+(y, ; 0) +p-(y, 2 ; O)l?  
$(!I, z ; 0) = (A,  + 1 )  Ps(Y,  4 - f o ( 4 ,  
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where both (A 3a) and (A 7 )  have been used. With the far-field behaviour (2.28) the 
expression for the scattered wave, in the region IyI 2 6, is given by 

00 

$‘(y,z;O) = [A,+K,U(ly/-6)] fo(z)+ C L~($)f , (~)e-~n(l~I-” ,  (A 14) 
n-1 

and, in this case, the weak equation (2.13) reads 

Go($: y3 =KO v,(y3+K,u(L;(y3+~,(y3). (A 15a) 

Taking Y =f,(z) and $ ( y , z ; O )  given by (A 13) one obtains 

(A 15b) 

In a head sea, however, KO &(f0) = - G,(fo ; f,) (see (A 5 c ) )  and since G,(ps; f,) = 2K, 
A ,  (see (A 4)), then 

(A 15c) 
U 

A ,  = - 1 + - .  
4 

From (A 13) it follows that 

(A 16a) 

For this symmetric problem, T(0) = R(0) = Rs(0), where T(0) is the constant 
coefficient that multiplies fo(z) in the far field; see (2.5). From (A 14) one obtains 
T(0) = A ,  - K O  6U and so 

Rs(0) =-1+u --K,6 , (A 16b) 

with the help of (A 15c). It follows that the head-sea solution, with the far-field 
behaviour (2.28), is given by (2.27b) with U in place of -isina!. This result could be 
anticipated if one observes that (A 14),  with {A,  = - 1 ; U = -isina!}, is consistent 
with (2.10) when a! +O, since A$(cr) - - 1  in this limit; see (A 10). 

c, 1 
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